Python 財務計算 [線上課程] 線上課程

Python 財務計算 [線上課程]

本課程結合資訊金融數學的跨領域課程,可作為成為 P QuantQ Quant 的入門課程,深入淺出介紹數學模型背後的金融意義,並提供學員 Python 範例程式以期降低進入門檻,希望學員可以透過本課程建立量化研究的基礎,在未來持續發展適合自己的分析工具。本課程適合金融從業人員,進行計算金融、計量經濟、風險管理、量化交易等研究;我們也歡迎對於資訊、統計與金融有興趣的學生與社會人士。本課程亦涵蓋部分 CFA 與 FRM 考試內容 [0, 1] ,如量化分析、資產評價、衍生性金融商品 (以期貨選擇權為主) 等 [2]。




[0] 台灣財務金融研究協會,CFA 證照考試說明
[1] 台灣財務金融研究協會, FRM 證照考試說明
[2] FRM Study Guide (annotated), 2020

※線上課程上課時間:於開課時間內可自行安排時間上課
影片上架進度,請參考備註欄位第(三)點線上課程常見QA連結網址

課程大綱

0. Python 程式基礎
1. 量化研究初探
-- 資料擷取與預處理
-- 資料視覺化
-- 技術分析
-- 回測
2. 常用的數學套件與其理論
-- 線性代數
-- 科學計算:內插、最佳化
-- 機率與統計:回歸模型
3. 現代投資理論
-- 馬可維茲平均數-變異數分析與效率前緣
-- 資本定價理論
-- 多因子模型
4. 金融時間序列分析
-- 自我相關係數與平穩時間序列
-- 自回歸移動平均模型
-- 葛蘭傑因果檢定
-- 結構性改變
5. 定價理論 (財務工程)
-- 期貨與選擇權
-- 無套利原則
-- 溫拿過程
-- 布萊克-休斯公式
-- 隱含波動率與VIX指數
6. 機器學習導論

##########################################################

0. Python programming
1. Debut of quantitative research
-- Data acquisition and preprocessing
-- Data visualization
-- Strategy development by technical analysis
-- Backtesting
2. Selected math tools
-- Linear algebra
-- Scientific methods: interpolation and optimization
-- Probability models
-- Statistical inference
-- Linear regression
3. Modern portfolio theory
-- Markowitz's mean-variance analysis and efficient frontier
-- Capital Asset Pricing Models (CAPM)
-- Factor models
4. Financial time series analysis
-- Autocorrelation and stationary process
-- ARIMA model
5. Pricing theory (financial engineering)
-- Futures and options
-- Arbitrage-free principle
-- Wiener process
-- Black-Scholes formula
-- Implied volatility and VIX Index
6. Machine learning tutorial
##########################################################
[0] John C. Hull, Options, Futures, and Other Derivatives, 10/e, 2017
[1] Dan Passarelli, Trading Option Greeks: How Time, Volatility, and Other Pricing Factors Drive Profits, 2/e, 2012
[2] Zvi Bodie, Alex Kane, Alan J. Marcus, Investments, 12/e, 2020
##########################################################
註0:更新於 2023-06-30。
註1:英文教材中文授課。

適合對象

適合欲從事金融量化研究者,無 Python 程式經驗者可,完全無程式經驗者不建議*

* 本課程為應用課程,非純程式語言課程;若完全沒有任何程式基礎者,請先於其他 Python 語言課程中掌握基本語法。課程中用到的程式概念諸如:陣列、迴圈、函式、物件,將於第一堂課介紹/複習。另外本課程也已備妥需要的範例程式,希望程式語言的初學者至少能夠自行修改程式碼以便完成作業。

開發環境

Python on Google Colab

線上課程注意事項

●線上課程採遠距教學,無需到班上課!

●線上課程影片無字幕輔助

●線上課程為非同步教學,無法及時互動回覆,請學員需自行評估是否適合自己的學習模式。

● 上課教材、影片:開課當天會發送註冊信至信箱,註冊完畢後即可開始上課。

● 繳交作業期限:依照各班講師規定;通過課程標準才會製作證書。

● 課程影片下架日:結束日後六個月

●學員於開課後登入課程時, 登入帳號務必與報名時所填寫的EMAIL相同!!!

公務員全程參與課程學習後可於課程結束後申請登錄公務人員學習時數

 

(一)轉班或退費期限:開課日後⅓時數內,詳情連結

(二)結業狀況:查詢是否合格及證書製作進度,結業名單連結

(三)線上課程上課時間:請參考官網最新消息「線上課程常見QA」,詳情連結

(四)報名備註欄位僅可填寫優惠同行人,收據開立時間及其他問題請直接寄EMAIL向我們聯繫

近期班次

  • 第433期 招生中

    課程類別:線上課程

    開課日期:2025.01.15 ~ 2025.03.12

    學費:新生新台幣4500元整

  • 講師介紹

    (一) 經驗

    臺灣大學 腦與心智科學研究所 兼任研究助理 (2014.8--present)
    臺灣大學 資訊工程學系 資訊系統訓練班 講師 (2014.1--present)
    中國信託商業銀行 全球金融商品交易處 期貨自營部 實習研究員 (2014.1--2023.9)
    臺灣大學 資訊工程學系 課程助教:計算理論、離散數學、財務演算法 (2012.9--2024.7)

    (二) 學歷

    臺灣大學資訊工程研究所 博士
    交通大學電信工程研究所 碩士
    中央大學電機工程學系 學士

    (三) 研究興趣 / 專長

    Financial Engineeering, Quantitative Finance, and Algorithmic Trading
    Analysis & Design of Algorithms
    Statistics, Data Science, Machine Learning / Deep Learning
    Computing Theory and Programming Languages
    System Design & Administration and High Performance Computing

    (四) 教學特色

    中文授課,課程教材以英文為主。適合規劃出國求學或對科學 / 技術理論有興趣的學員。
    2014 年至本班教學,累計授課時數至 2024 年 8 月 12 日為 11850 小時。